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The generalized Coulomb problem: an exactly solvable model 
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Abstract We investigate an exactly solvable potential class which contains the Coulomb 
potential as a special case. These potentials have an angulawnomenrum-depndent repulsive 
core, but retain several important characteristics of the Coulomb problem. Some vossible fields 
of their application are also proposed. 

. .  

The past ten years have seen revived interest in exactly solvable potentials of non-relativistic 
quantum mechanics, partly as the result of the introduction of supersymmetric quantum 
mechanics (SUSYQM) [I]. These investigations have focused mainly on the fundamental 
aspects (classification, symmetries, etc) of solvable potentials and on the identification of 
new potentials of this kind. Although the general solution of large potential families have 
been given, the resulting formulae are usually too complicated for practical use. Some of 
the special subclasses, however, may avoid these drawbacks, and at the same time may offer 
potential shapes different from those of the simplest solvable problems. Here we descrik 
one more of these ‘non-trivial’ potentials and suggest possible fields of its application. 

The transformation reducing the onedimensional Schmdinger equation 

dzY - + (E -\v(r))Y(x) = 0 
d x z  

to the second-order differential equation 

of some special function F(g) can be formulated in various ways. The most general 
procedure of this kind for the hypergeometric and confluent hypergeome~c functions was 
given by Natanzon [2]. The general Natanmn and Natanzon confluent [3] potentials 
are written as complicated six-parameter expressions of the coordinate, and their energy 
eigenvalues E. are given by an implicit formula. 

This method allows the general treatment of a large cl&s of potentials with a wide 
variety of shapes; nevertheless their extensive application is usually hindered by technical 
difficulties in their most general fom. Until now only some special subcIasses have been 
studied in detail. In addition to the simplest such subclass, the ‘shape-invariant’ potentials 
141 (which contain many of the most well known textbook examples of exactly solvable 
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potentials), only a few other cases (for example the Ginocchio [5], the ‘PIE’ [6], and some 
other potentials [7, 81) have been investigated more or less thoroughly. A common feature 
of most of these potentials is that they occupy an in-between situation between the trivial 
shape-invariant potentials and the general Natanzon (coduent) potentials. In particular, 
the potentials in [5] and [6] correspond to Natanzon potentials with zero value of one of 
the three parameters determining the variable transformation g(x) in equations (1) and (Z), 
which choice also simplifies the determination of the energy eigenvalues from the implicit 
formula but, at the same time, results in an implicit function x ( g )  rather than g(x) .  The 
potentials in [SI represent another kind of special case, in some sense opposite to the 
previous examples, as the three parameters have the same non-zero value, which results in 
a complicated energy formula, but helps to avoid having an implicit x(g) function. (The 
12 known shapeinvariant potentials correspond to cases in which two of these parameters 
are zero and therefore both their energy formula and g(x)  have relatively simple forms.) 

Here we describe one more of these ‘intermediate’ potentials, which are more general 
than the shape-invariant ones, but at the same time can be handled in a relatively simple 
way. In contrast with most of the previously mentioned potentials [5, 6, 81 which were 
obtained from the hypergeometic equation, this one belongs to the Natanzon confluent 
class [3], in fact it is the generalization of one of the potentials discussed briefly in [7]. It 
can also be considered the generalized version of the Coulomb problem, which it contains as 
a special (shape-invariant) subcase. (There is a similar relationship between the Ginocchio 
[5] and the Poschl-Teller potentials.) In order to derive it, here we use an old method [9] 
which can simply be related to algebraic techniques [ 101 and can be combined [I I] with 
the formalism of supersymmetric quantum mechanics. 

G L h a i  and B W Williams 

Substituting Q(x)  = f ( x ) F ( g ( x ) )  in (1) we find that (2) is recovered if 

holds, where 

Now, considering specifically the conffuent hypergeometric function F(-n, p; g(x))  and 
introducing the simple g(x)  = ph(x )  substitution we get 

Observing that a constant (x-independent) term has to be present on the right-hand si& 
to account for E, on the left-hand si& we can set up differentid equations to determine 
h(x) .  Selecting one of the last three terms on the right-hand side of (5) the three shape- 
invariant potentials of the confluent hypergeometric case (the three-dimensional harmonic 
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oscillator, the Coulomb problem and the Morse potential) could be recovemi. Considering 
the combination of the first two such terms by 

and solving the differential equation 

we obtain x(h)  rather than h(x)  as 

which is similar to the situation with most of the other exactly solvable non-shape- variant 
potentials [5-71. 

-This implicit h(x)  function can, of course, be computed to any desired accuracy and 
therefore the potential V ( x )  = V ( h ( r ) )  and the wavefunctions Y ( x )  = Y ( h ( x ) )  can also be 
evaluated. h(x)  maps the 1 0 , ~ )  half-axis onto itself, its asymptotic behaviour for x -+ 00 

is h(x)  + C!/'x, while the series expansion of the right-hand si@ of (S).reveals that it 
can be approximated by Cx2/48 near the origin. From here on we shall consider V ( x )  a 
central potential and replace x with r .  

Substituting this h ( r )  into (5) we get 

The n-dependence of the potential term can be removed by introducing the constant 

which amounts  to^ a specific choice of p = pn. Rewriting the formulae in this way, we 
obtain the final expression of the wavefunctions 

, 

and the energy eigenvalues 
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(Here we chose the zero point of the energy scale at V(r + 00) = 0.) The form of the 
wavefunction in (1 1) suggests that it can be regular only for positive values of p,,, therefore 
only the positive mot of (10) should be considered. The normalization factor N in (11) can 
be determined by performing straightforward integrations [12]: 

G Livai and B W Williams 

B is restricted to positive values only, and here we consider only 6 2 0 to avoid singularities 
for r =. 0. In this case D can also have only positive values. Similarly to the Coulomb 
problem, any non-negative integer values of n are. allowed, therefore this potential supports 
an infinite number of bound states, with energy eigenvalues E, converging to zero from 
below in the n 00 limit. Taking 0 = 0, all the above expressions, of course, yield the 
corresponding results for the Coulomb problem with 2fiZez/frz = C1l2D and 1 = -1  +BIZ. 
(However, some care should be taken in recovering the standard results of the hydrogen 
atom, as the generalized Laguerre polynomials normally used in these formulae are defined 
in a different way in mathematical handbooks [12] and in most of the textbooks on quantum 
mechanics.) 

The approximate behaviour of the four terms of the potential V(r) near the origin and 
in the r + 00 limit is summarized in table 1. These results suggest that this potential 
can be considered a Coulomb potential in three. spatial dimensions distorted by an angular- 
momentum-dependent repulsive central potential (if we interpret f l  as 2(Z+ 1)). In this case 
it can be rewritten as 

l(Z + 1) ~ V ( r )  = V&) + W r )  + - 
rz 

Table 1. Approximate behaviour of the four terms,of the potential in (12) near the origin and 
in the asymptotic limit 

where 
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and 

One important implication of these results is Rat the above potential extends the limited 
range of central potentials which are exactly solvable for any value of the angular momentum 
1 .  V&) is Coulomb-like~for large r and has a singular repulsive 'core' Vo(r) 2 3/4r2 near 
the origin. The angular-momentumdependent term ~V, ( r )  is also repulsive, and decreases 
monotonously with increasing values of r .  This is partly due to u(r) which also decreases 
monotonously (from the value of 3 to 0). decaying more rapidly for small values of 0 (and 
of course, disappearing in the 0 = 0 (Coulomb) case). In figure 1, potential (15) has been 
plotted for l ~ =  0.1 and~2 (i.e. @ = 2 ,4  and 6) using~two different values of 0. 

Quantum mechanical potentials with properties described above could he used to 
 simulate^ effective forces arising from electrons occupying inner atomic shells. As an 
early application of supersymmetric quantum mechanics, for example, similar (l/r2-like) 
repulsive potentials have been used in [13] to inter-relate different alkali metal atoms 
within the framework of phenomenologic supersymmehy. Considering another length scale, 
potential (15) could also be used in the description of mesonic atoms to account for the 
deviations from the unperturbed Coulomb potential due to the finite size of nuclei, which 
have been approximated previously by the 'cut-off Coulomb potential [MI, for example. 

Similarly to the Coulomb problem, the energy eigenvalues of the hound states depend 
on n +B/2, i.e. n +1+ 1, therefore this potential~exhibits a level degeneracy similar to that 
of the Coulomb problem, which is related to an O(4) symmetry group. An interesting task 
would be to inspect the symmetry underlying this degeneracy, but it is beyond the scope of 
this work. 

In terms of SUSYQM, V ( r )  and E" can be obtained from the superpotential 

Deriving the supersymmetric partner of K ( r )  E V(r)  - EO, 

0 2 ' 4  8 
r 

Figure 1. Potential (15) plolted for 0 = 0.2 (U)  and 1.0 (b),  keeping C and D at consfant values 
(C = 1 .O and D = 5.0). We have displayed the potential cwes for 1 = 0.1 and 2 (i.e. p = 2,4 
and 6) together with the position of the lowest-lying energy level for each partial wave I .  
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we find that similarly to the other ‘non-trivial’ exactly solvable potentials [ 5 4 ]  this one 
is also outside the shape-invariant class. Furthermore, the wavefunctions of V+(r) can be 
written as the sum of two confluent hypergeometric functions, which indicates [IS] that 
it is outside the Natanzon confluent class and belongs to an even more general family of 
solvable potentials. It is worth mentioning, though, that V+(r) with p = 2( l+  1) has the 
same number of states with thesame energy eigenvalues as V-(r) has with p+Z = 2(l+2), 
but still the two potentials and the corresponding wavefunctions are different, and become 
identical only in the B = 0 shape-invariant (Coulomb) limit. 

Finally, we show how this potential can be derived from other approaches. It can be 
obtained from the general N a t a ”  confluent potential in 131 after selecting the following 
set of parameters: uz = 4/c ,  U, = &/c, CO = 0; gz = 0, gl = -40, q = ( p  + I ) ~ .  It 
also corresponds to the generalized version of the type-(d) ‘implicit potential’ in table 1 of 
171 derived from one realization of the SU(l.1) spectrum-generating algebra. 

In summary, we have described a class of potentials which can be interpreted as the 
generalization of the Coulomb problem. It has an angular-momentum-dependent repulsive 
‘core’, but it is solvable for any 1. This example emphasizes the importance of those 
special subclasses of the Natanzon (confluent) potentials, which can be obtained by a similar 
generalization of other shape-invariant potentials. These potentials retajn certain features of 
the simple shape-invariant potentials, but offer a wider variety of shapes and therefore may 
find more widespread applications. 

G Livai and B W Williams 
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